Non-rigidity of Spherical Inversive Distance Circle Packings
نویسندگان
چکیده
We give a counterexample of Bowers-Stephenson's conjecture in the spherical case: spherical inversive distance circle packings are not determined by their inversive distances.
منابع مشابه
Ma-schlenker C -octahedra in the 2-sphere
We present constructions inspired by the Ma-Schlenker example of [9] that show the non-rigidity of spherical inversive distance circle packings. In contrast to the use in [9] of an infinitesimally flexible Euclidean polyhedron, embeddings in de Sitter space, and Pogorelov maps, our elementary constructions use only the inversive geometry of the 2-sphere.
متن کاملRigidity of Circle Polyhedra in the 2-sphere and of Hyperideal Polyhedra in Hyperbolic 3-space
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and proper non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings in the ...
متن کاملCauchy Rigidity of C -polyhedra
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean 3-space E to the context of circle polyhedra in the 2-sphere S. We prove that any two convex and bounded non-unitary c-polyhedra with Möbiuscongruent faces that are consistently oriented are Möbius-congruent. Our result implies the global rigidity of convex inversive distance circle packings as wel...
متن کامل8 M ar 2 00 9 LOCAL RIGIDITY OF INVERSIVE DISTANCE CIRCLE PACKING
A Euclidean (or hyperbolic) circle packing on a closed triangulated surface with prescribed inversive distance is locally determined by its cone angles. We prove this by applying a variational principle.
متن کامل2 00 9 Local Rigidity of Inversive Distance Circle Packing
A Euclidean (or hyperbolic) circle packing on a closed triangulated surface with prescribed inversive distance is locally determined by its cone angles. We prove this by applying a variational principle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 47 شماره
صفحات -
تاریخ انتشار 2012